
(More)Advanced defense for IE

Bo Qu, Royce Lu & Ga1ois

Agenda

 whoami

 history|less

 ls ~/InternetExploder/js

 ls ~/InternetExploder/flash

 ls ~/InternetExploder/luchong

 ./exp

 man -h

About us

 IPS team of Palo Alto Networks(09:00-17:00)

 Researchers(19:00-22:00)

 http://osvdb.org/affiliations/1148-palo-alto-networks

 White hats

 100+ CVEs from vendors

 0 bug sold to ZDI/3rd party

 Exploit writer for defense in depth

History

 June patch

 Isolated heap

 Not a problem

 July patch

 Deferred free

 Not a silver bullet

History

 UAF is NOT everything

 Type confusion

 Overflow

 Uninitialized memory

 Other memory corruption…

 Defense on the heap, or deeper?

Project JS

 Exploit trends in IE browser

 UAF and OBA(Out of Boundary Access)

 Write primitive

 Write what?

 BSTR

 Array

 Element Attribute

 Other

Project JS

 Why Array?

 Simple: Few JS code

 Powerful: From write one byte to read/write anywhere

 Extensive: UAF and OBA, heap spray and heap layout,

javascript and vbscript

Project JS

 Defense array heap spray and heap layout

 Hook array allocate function

 Loop Counts and array length

Project JS

 Defense array write primitive

 Core idea: Precise “address + length/buffer”

modification checking

 Three types

 Different allocate functions

 Different get/set/length functions

 Code overlapping problem of inline hook

 Different functions between JIT and not

Project JS

 Defense array write primitive

 Typed Array

 Native Int Array with head and data together[not sparse]

 Native Int Array with head and data alone[not sparse]

Project JS

 Limitations

 Check most UAF/OBA exploit

 except the one not using BSTR/Array/EA

 except the one like cve-2013-2551

 “BSTR, Element Attribute” to be continued…

Project Flash

 Why flash?

 It is popular

 It provides more than it should have

 It used to be a blind point

Project Flash

 [Heap] Spray

 Regular heap spray

 Small chunk spray

Project Flash

 [Heap] Spray

 Two-layer defense

 Object allocation monitor

 Memory usage monitor

 Reduce false positives

Project Flash

 Vector

 The root of all evils

 Modification of length

 Modification of buffer address

 Full memory access is *bad*

Project Flash

 Vector

 Write 0? 1-(58.3%)n chance to exploit.

0x00 0x04 0x08 0x0c 0x10 0x14 0x18 0x1c 0x20 0x24

VT 0x4e ? ? ? 0x00 PTR 0x00 0x00 0x00

0x00 …

Len …

Project Flash

 Vector

 Hooking read/write functions(6 places?)

 Length checking

 Single object checking

 Multiple objects checking

 Buffer checking

 Mapping table

 Buffer validation

Project Luchong

 Project Luchong(路冲)

 The bad Fengshui

 Destroy predictable heap layout

 Transparent to user level

Project Luchong

 Why Luchong

 Heap Fengshui is vital for exploitation

 Heap is predictable

 Continuous, linear increasing.

 Alignment.

 Other features for performance

Project Luchong

 Mechanism

 Understand the accurate spay

 Higher 20 bits

 Guaranteed by repeatedly allocation

 Optimized by linear increasing mechanism
 Lower 12 bits

 Guaranteed by alignment

Project Luchong

0C0C0C0C

Project Luchong

 Mechanism(cont.)

 Break linear increasing mechanism

 Large sized chunk

 Small sized chunk

 Light-weight solution

target

Project Luchong

 Mechanism(cont.)

 Break the alignment

 Large sized chunk (0x1000 alignment)

 Small sized chunk (0x08 alignment)

 Allocate more bytes than it requests

Project Luchong

 Mechanism(cont.)

 Understand the exploits

 Buggy object and exploit object are different ones.

 Exploit object must be placed in certain position

 UAF, same position

 OBA, next to buggy object

 Others
 Size matters

Project Luchong

VT

data data data data data

data data

call [exx+xx] ->xchg eax,esp

data

inc [exx+xx]

Project Luchong

 Mechanism(cont.)

 Break the heap fengshui

 Focus on small chunk(<0x200 bytes)

 Create more heaps

 Randomize the memory layout

 Randomize the actual size

Project Luchong

1, misaligned
2, inaccurate data control
3, failed exploitation

Project Luchong

 Everything else

 Cookie for the heap chunk

 Post exploitation checking

 Chunk initialization

 Deal with uninitialized cases

 Timestamp for the free’d chunk

 Enhanced deferred free

Project Luchong

 Limitation despite of 99% coverage

 Trade off between performance and accuracy

 Stack things

 CVE-2014-2797, type confusion on the stack

 Brute force

 Logic bugs

Demo

 Demo

Q&A

